October 4, 2024

Health Benefit

Healthy is Rich, Today's Best Investment

Leveraging clinical data across healthcare institutions for continual learning of predictive risk models

Leveraging clinical data across healthcare institutions for continual learning of predictive risk models
  • Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, C. S. & Lee, A. Y. Clinical applications of continual learning machine learning. Lancet Digit. Health 2, e279–e281. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tyler, N. S. et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat. Metab. 2, 612–619. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y., Wang, F., Tang, J., Nussinov, R. & Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94. (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Abràmoff, M. D. et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig. Ophthalmol. Vis. Sci. 57, 5200–5206. (2016).

    Article 

    Google Scholar 

  • De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118. (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleuren, L. M. et al. Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 46, 383–400. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yim, J. et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat. Med. 26, 892–899. (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H., Goo, J. M., Lee, K. H., Kim, Y. T. & Park, C. M. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. Radiology 296, 216–224. (2020).

    Article 
    PubMed 

    Google Scholar 

  • Wang, P. et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study. Gut 68, 1813–1819. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Wang, F., Casalino, L. P. & Khullar, D. Deep learning in medicine-promise, progress, and challenges. JAMA Intern. Med. 179, 293–294. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387. (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • A survey on deep learning in medicine: Why, how and when? | Elsevier Enhanced Reader, https://doi.org/10.1016/j.inffus.2020.09.006.

  • Shokri, R. & Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, 1310–1321, (Association for Computing Machinery, New York, NY, USA, 2015).

  • Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. JAMA 319, 1317–1318. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wong, A. et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern. Med. 181, 1065–1070 (2021).

    Article 

    Google Scholar 

  • Wong, A. et al. Quantification of sepsis model alerts in 24 US hospitals before and during the COVID-19 pandemic. JAMA Netw. Open 4, e2135286 (2021).

    Article 

    Google Scholar 

  • Wardi, G. et al. Predicting progression to septic shock in the emergency department using an externally generalizable machine-learning algorithm. Ann. Emerg. Med. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holder, A. L., Shashikumar, S. P., Wardi, G., Buchman, T. G. & Nemati, S. A locally optimized data-driven tool to predict sepsis-associated vasopressor use in the ICU. Crit. Care Med. 49, e1196–e1205 (2021).

    PubMed 

    Google Scholar 

  • Health, C. f. D. a. R. Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA (FDA, 2021)

  • Vokinger, K. N., Feuerriegel, S. & Kesselheim, A. S. Continual learning in medical devices: FDA’s action plan and beyond. Lancet Digit. Health 3, e337–e338 (2021).

    Article 

    Google Scholar 

  • Rieke, N. et al. The future of digital health with federated learning. npj Digit. Med. 3, 1–7. (2020).

    Article 

    Google Scholar 

  • Kaissis, G. et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3, 473–484. (2021).

    Article 

    Google Scholar 

  • Warnat-Herresthal, S. et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 594, 265–270. (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, W. N. & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43. (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic intelligence. In Proceedings of the 34th International Conference on Machine Learning, 3987–3995 (PMLR, 2017). ISSN: 2640-3498.

  • van de Ven, G. M. & Tolias, A. S. Three scenarios for continual learning. arXiv:1904.07734 [cs, stat] (2019).

  • Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks. arXiv:1312.6211 [cs, stat] (2015).

  • Kiyasseh, D., Zhu, T. & Clifton, D. A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions. Nat. Commun. 12, 4221. (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. arXiv:1612.00796 [cs, stat] (2017).

  • Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. iCaRL: Incremental Classifier and Representation Learning. arXiv:1611.07725 [cs, stat] (2017).

  • Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P. & Wayne, G. Experience Replay for Continual Learning. arXiv:1811.11682 [cs, stat] (2019).

  • Lopez-Paz, D. & Ranzato, M. A. Gradient episodic memory for continual learning. In Advances in Neural Information Processing Systems, Vol. 30 (Curran Associates, Inc., 2017).

  • Shin, H., Lee, J. K., Kim, J. & Kim, J. Continual Learning with Deep Generative Replay. arXiv:1705.08690 [cs] (2017).

  • Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) | Critical Care Medicine | JAMA | JAMA Network.

  • Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Norgeot, B., Glicksberg, B. S. & Butte, A. J. A call for deep-learning healthcare. Nat. Med. 25, 14–15. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miotto, R., Wang, F., Wang, S., Jiang, X. & Dudley, J. T. Deep learning for healthcare: Review, opportunities and challenges. Brief. Bioinform. 19, 1236–1246. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Xu, J. et al. Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5, 1–19. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Sheller, M. J. et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10, 12598. (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, L. et al. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 99, 103291. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Qayyum, A., Ahmad, K., Ahsan, M. A., Al-Fuqaha, A. & Qadir, J. Collaborative Federated Learning For Healthcare: Multi-Modal COVID-19 Diagnosis at the Edge. arXiv:2101.07511 [cs] (2021).

  • Wong, A. et al. Quantification of sepsis model alerts in 24 US hospitals before and during the COVID-19 pandemic. JAMA Netw. Open 4, e2135286. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shashikumar, S. P., Wardi, G., Malhotra, A. & Nemati, S. Artificial Intelligence Sepsis Prediction Algorithm Learns to Say “I don’t know”. Tech. Rep. (2021). https://doi.org/10.1101/2021.05.06.21256764.

  • Hung, C.-Y. et al. Compacting, picking and growing for unforgetting continual learning. In Advances in Neural Information Processing Systems, Vol. 32 (Curran Associates, Inc., 2019).

  • Li, X., Zhou, Y., Wu, T., Socher, R. & Xiong, C. Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. In Proceedings of the 36th International Conference on Machine Learning, 3925–3934 (PMLR, 2019). ISSN: 2640-3498.

  • Johnson, A. et al. MIMIC-IV, Version Number: 1.0 Type: dataset.

  • Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abadi, M. et al. Tensorflow: A system for large-scale machine learning. In OSDI Vol. 16, 265–283 (2016).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.