Site icon Health Benefit

Leveraging clinical data across healthcare institutions for continual learning of predictive risk models

  • Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, C. S. & Lee, A. Y. Clinical applications of continual learning machine learning. Lancet Digit. Health 2, e279–e281. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tyler, N. S. et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat. Metab. 2, 612–619. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y., Wang, F., Tang, J., Nussinov, R. & Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94. (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Abràmoff, M. D. et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig. Ophthalmol. Vis. Sci. 57, 5200–5206. (2016).

    Article 

    Google Scholar 

  • De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118. (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleuren, L. M. et al. Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 46, 383–400. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yim, J. et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat. Med. 26, 892–899. (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H., Goo, J. M., Lee, K. H., Kim, Y. T. & Park, C. M. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. Radiology 296, 216–224. (2020).

    Article 
    PubMed 

    Google Scholar 

  • Wang, P. et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study. Gut 68, 1813–1819. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Wang, F., Casalino, L. P. & Khullar, D. Deep learning in medicine-promise, progress, and challenges. JAMA Intern. Med. 179, 293–294. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387. (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • A survey on deep learning in medicine: Why, how and when? | Elsevier Enhanced Reader, https://doi.org/10.1016/j.inffus.2020.09.006.

  • Shokri, R. & Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, 1310–1321, (Association for Computing Machinery, New York, NY, USA, 2015).

  • Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. JAMA 319, 1317–1318. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wong, A. et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern. Med. 181, 1065–1070 (2021).

    Article 

    Google Scholar 

  • Wong, A. et al. Quantification of sepsis model alerts in 24 US hospitals before and during the COVID-19 pandemic. JAMA Netw. Open 4, e2135286 (2021).

    Article 

    Google Scholar 

  • Wardi, G. et al. Predicting progression to septic shock in the emergency department using an externally generalizable machine-learning algorithm. Ann. Emerg. Med. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holder, A. L., Shashikumar, S. P., Wardi, G., Buchman, T. G. & Nemati, S. A locally optimized data-driven tool to predict sepsis-associated vasopressor use in the ICU. Crit. Care Med. 49, e1196–e1205 (2021).

    PubMed 

    Google Scholar 

  • Health, C. f. D. a. R. Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA (FDA, 2021)

  • Vokinger, K. N., Feuerriegel, S. & Kesselheim, A. S. Continual learning in medical devices: FDA’s action plan and beyond. Lancet Digit. Health 3, e337–e338 (2021).

    Article 

    Google Scholar 

  • Rieke, N. et al. The future of digital health with federated learning. npj Digit. Med. 3, 1–7. (2020).

    Article 

    Google Scholar 

  • Kaissis, G. et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3, 473–484. (2021).

    Article 

    Google Scholar 

  • Warnat-Herresthal, S. et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 594, 265–270. (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, W. N. & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43. (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic intelligence. In Proceedings of the 34th International Conference on Machine Learning, 3987–3995 (PMLR, 2017). ISSN: 2640-3498.

  • van de Ven, G. M. & Tolias, A. S. Three scenarios for continual learning. arXiv:1904.07734 [cs, stat] (2019).

  • Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks. arXiv:1312.6211 [cs, stat] (2015).

  • Kiyasseh, D., Zhu, T. & Clifton, D. A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions. Nat. Commun. 12, 4221. (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. arXiv:1612.00796 [cs, stat] (2017).

  • Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. iCaRL: Incremental Classifier and Representation Learning. arXiv:1611.07725 [cs, stat] (2017).

  • Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P. & Wayne, G. Experience Replay for Continual Learning. arXiv:1811.11682 [cs, stat] (2019).

  • Lopez-Paz, D. & Ranzato, M. A. Gradient episodic memory for continual learning. In Advances in Neural Information Processing Systems, Vol. 30 (Curran Associates, Inc., 2017).

  • Shin, H., Lee, J. K., Kim, J. & Kim, J. Continual Learning with Deep Generative Replay. arXiv:1705.08690 [cs] (2017).

  • Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) | Critical Care Medicine | JAMA | JAMA Network.

  • Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Norgeot, B., Glicksberg, B. S. & Butte, A. J. A call for deep-learning healthcare. Nat. Med. 25, 14–15. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miotto, R., Wang, F., Wang, S., Jiang, X. & Dudley, J. T. Deep learning for healthcare: Review, opportunities and challenges. Brief. Bioinform. 19, 1236–1246. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Xu, J. et al. Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5, 1–19. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Sheller, M. J. et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10, 12598. (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, L. et al. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 99, 103291. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Qayyum, A., Ahmad, K., Ahsan, M. A., Al-Fuqaha, A. & Qadir, J. Collaborative Federated Learning For Healthcare: Multi-Modal COVID-19 Diagnosis at the Edge. arXiv:2101.07511 [cs] (2021).

  • Wong, A. et al. Quantification of sepsis model alerts in 24 US hospitals before and during the COVID-19 pandemic. JAMA Netw. Open 4, e2135286. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shashikumar, S. P., Wardi, G., Malhotra, A. & Nemati, S. Artificial Intelligence Sepsis Prediction Algorithm Learns to Say “I don’t know”. Tech. Rep. (2021). https://doi.org/10.1101/2021.05.06.21256764.

  • Hung, C.-Y. et al. Compacting, picking and growing for unforgetting continual learning. In Advances in Neural Information Processing Systems, Vol. 32 (Curran Associates, Inc., 2019).

  • Li, X., Zhou, Y., Wu, T., Socher, R. & Xiong, C. Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. In Proceedings of the 36th International Conference on Machine Learning, 3925–3934 (PMLR, 2019). ISSN: 2640-3498.

  • Johnson, A. et al. MIMIC-IV, Version Number: 1.0 Type: dataset.

  • Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abadi, M. et al. Tensorflow: A system for large-scale machine learning. In OSDI Vol. 16, 265–283 (2016).

  • link

    Exit mobile version