May 4, 2025

Health Benefit

Healthy is Rich, Today's Best Investment

Advancing adoptability and sustainability of digital prediction tools for climate-sensitive infectious disease prevention and control

Advancing adoptability and sustainability of digital prediction tools for climate-sensitive infectious disease prevention and control
  • IPCC. Summary for policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Lee, H. & Romero, J) 1–34 (IPCC, Geneva, Switzerland, 2023).

  • Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rocklöv, J. & Dubrow, R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 479–483 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Anas, M. et al. in: Microbiomes and the Global Climate Change (eds Showkat Ahmad Lone & Abdul Malik). 123–144 (Springer, Singapore, 2021).

  • Alcayna, T. et al. Climate-sensitive disease outbreaks in the aftermath of extreme climatic events: a scoping review. One Earth 5, 336–350 (2022).

    Article 
    ADS 

    Google Scholar 

  • Cascio, W. E. Wildland fire smoke and human health. Sci. Total Environ. 624, 586–595 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Reid, C. E. & Maestas, M. M. Wildfire smoke exposure under climate change: impact on respiratory health of affected communities. Curr. Opin. Pulm. Med. 25, 179–187 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mirsaeidi, M. et al. Climate change and respiratory infections. Ann. Am. Thorac. Soc. 13, 1223–1230 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Gorris, M. E., Treseder, K. K., Zender, C. S. & Randerson, J. T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth 3, 308–327 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Head, J. R. et al. Effects of precipitation, heat, and drought on incidence and expansion of coccidioidomycosis in western USA: a longitudinal surveillance study. Lancet Planet. Health 6, e793–e803 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • He, Y., Liu, W. J., Jia, N., Richardson, S. & Huang, C. Viral respiratory infections in a rapidly changing climate: the need to prepare for the next pandemic. EBioMedicine 93, 104593 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Pley, C., Evans, M., Lowe, R., Montgomery, H. & Yacoub, S. Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. Lancet Planet. Health 5, e739–e745 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ryan, S. J. et al. The current landscape of software tools for the climate-sensitive infectious disease modelling community. Lancet Planet. Health 7, e527–e536 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Neta, G. et al. Advancing climate change health adaptation through implementation science. Lancet Planet. Health 6, e909–e918 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nsubuga, P. et al. Public health surveillance: a tool for targeting and monitoring interventions. In Disease Control Priorities in Developing Countries. 2nd ed. (eds Jamison, D. T. et al.) 997–1015 (Oxford University Press, 2006).

  • Stewart Ibarra, A. et al. Landscape mapping of software tools for climate-sensitive infectious disease modelling. (Inter-American Institute for Global Change Research: IAI and Wellcome Trust, 2022).

  • Interaction Design Foundation – IxDF. Useful, Usable, and Used: Why They Matter to Designers. (2020).

  • Lessler, J., Azman, A. S., Grabowski, M. K., Salje, H. & Rodriguez-Barraquer, I. Trends in the mechanistic and dynamic modeling of infectious diseases. Curr. Epidemiol. Rep. 3, 212–222 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Lowe, R. et al. Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect. Dis. 14, 619–626 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Colón-González, F. J. et al. A methodological framework for the evaluation of syndromic surveillance systems: a case study of England. BMC Public Health 18, 1–14 (2018).

    Article 

    Google Scholar 

  • Colón-González, F. J. et al. Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles. PLoS Med. 18, e1003542 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wikle, C. K. & Zammit-Mangion, A. Statistical deep learning for spatial and spatiotemporal data. Annu. Rev. Stat. Appl. 10, 247–270 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Yamana, T. K., Kandula, S. & Shaman, J. Superensemble forecasts of dengue outbreaks. J. R. Soc. Interface 13, 20160410 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Johansson, M. A. et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proc. Natl. Acad. Sci. USA 116, 24268–24274 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hyndman, R. J. & Athanasopoulos, G. Forecasting: Principles and Practice. 3rd edition. (OTexts, 2018).

  • Bürkner, P.-C., Gabry, J. & Vehtari, A. Approximate leave-future-out cross-validation for Bayesian time series models. J. Stat. Comput. Simul. 90, 2499–2523 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Funk, S. et al. Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15. PLoS Comput. Biol. 15, e1006785 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brier, G. W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Bradshaw, J. in Problems and Progress in Medical Care: Essays on Current Research, 7th series (ed Gordon McLachlan). 71–82 (Oxford, Oxford University Press, 1972).

  • Holden, R. J. & Karsh, B.-T. The technology acceptance model: its past and its future in health care. J. Biomed. Inform. 43, 159–172 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 35, 982–1003 (1989).

    Article 

    Google Scholar 

  • Venkatesh, V. & Davis, F. D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 46, 186–204 (2000).

    Article 
    MATH 

    Google Scholar 

  • Tamilmani, K., Rana, N. P., Wamba, S. F. & Dwivedi, R. The extended Unified Theory of Acceptance and Use of Technology (UTAUT2): A systematic literature review and theory evaluation. Int. J. Inf. Manage. 57, 102269 (2021).

    Article 

    Google Scholar 

  • Royse, D., Staton-Tindall, M., Badger, K. & Webster, J. M. Needs Assessment. (Oxford: Oxford University Press, 2009).

  • Bradshaw, J. The conceptualization and measurement of need: a social policy perspective. In Researching the People’s Health (eds Popay, J & Williams, G) 45–57 (Routledge, London, 1994).

  • Hayes, R. J. & Moulton, L. H. Cluster Randomised Trials. (Boca Raton, Florida, Chapman and Hall/CRC, 2017).

  • Hayes, R., Alexander, N. D., Bennett, S. & Cousens, S. Design and analysis issues in cluster-randomized trials of interventions against infectious diseases. Stat. Methods Med. Res. 9, 95–116 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Andersson, N. et al. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ 351, h3267 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dabira, E. D. et al. Mass drug administration of ivermectin and dihydroartemisinin–piperaquine against malaria in settings with high coverage of standard control interventions: a cluster-randomised controlled trial in The Gambia. Lancet Infect. Dis. 22, 519–528 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cha, S. et al. Effect of a community-led total sanitation intervention on the incidence and prevalence of diarrhea in children in rural Ethiopia: a cluster-randomized controlled trial. Am. J. Trop. Med. Hyg. 105, 532 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hurley, J. C. How the cluster-randomized trial “works. Clin. Infect. Dis. 70, 341–346 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Sanders, G. D. et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA 316, 1093–1103 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Cavany, S. et al. Does ignoring transmission dynamics lead to underestimation of the impact of interventions against mosquito-borne disease? BMJ Glob. Health 8, e012169 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eliopoulos, G. M. et al. The use and interpretation of quasi-experimental studies in infectious diseases. Clin. Infect. Dis. 38, 1586–1591 (2004).

    Article 
    MATH 

    Google Scholar 

  • Brazil Ministério da Saúde. Atualização de Casos de Arboviroses. (2024).

  • Alemayehu, C., Mitchell, G. & Nikles, J. Barriers for conducting clinical trials in developing countries- a systematic review. Int. J. Equity Health 17, 37 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuhn, K. Campbell-Lindrum, D., Haines, A. & Cox, J. Using Climate to Predict Infectious Disease Epidemics. (Geneva: World Health Organization, 2005).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.