April 14, 2024

Health Benefit

Healthy is Rich, Today's Best Investment

Machine learning-based analytics of the impact of the Covid-19 pandemic on alcohol consumption habit changes among United States healthcare workers

9 min read
  • Huang, C. et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395, 497–506 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rezapour, M. & Hansen, L. A machine learning analysis of COVID-19 mental health data. Sci. Rep. 12, 1–16 (2022).

    Article 

    Google Scholar 

  • Spoorthy, M., Pratapa, S. K. & Mahant, S. Mental health problems faced by healthcare workers due to the COVID-19 pandemic—A review. Asian J. Psychiatry 51, 102119 (2020).

    Article 

    Google Scholar 

  • Vizheh, M. et al. The mental health of healthcare workers in the COVID-19 pandemic: A systematic review. J. Diabetes Metabolic Disord. 19, 1967–1978 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lai, J. et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw. Open 3, e203976–e203976 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lima, C. K. T. et al. The emotional impact of Coronavirus 2019-nCoV (new Coronavirus disease). Psychiatry Res. 287, 112915 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenberg, N., Docherty, M., Gnanapragasam, S. & Wessely, S. Managing mental health challenges faced by healthcare workers during covid-19 pandemic. BMJ 368, 1 (2020).

    Google Scholar 

  • Di Tella, M., Romeo, A., Benfante, A. & Castelli, L. Mental health of healthcare workers during the COVID-19 pandemic in Italy. J. Eval. Clin. Pract. 26, 1583–1587 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chirico, F., Nucera, G. & Magnavita, N. Protecting the mental health of healthcare workers during the COVID-19 emergency. BJPsych Int. 18, 1 (2021).

    Article 

    Google Scholar 

  • Yang, L., Yin, J., Wang, D., Rahman, A. & Li, X. Urgent need to develop evidence-based self-help interventions for mental health of healthcare workers in COVID-19 pandemic. Psychol. Med. 51, 1775–1776 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chatzittofis, A., Karanikola, M., Michailidou, K. & Constantinidou, A. Impact of the COVID-19 pandemic on the mental health of healthcare workers. Int. J. Environ. Res. Public health 18, 1435 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beiter, K. J., Wiedemann, R. P., Thomas, C. L. & Conrad, E. J. Alcohol consumption and COVID-19–Related stress among health care workers: The need for continued Stress-Management interventions. Public Health Rep. 137(2), 326–335 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mongeau-Pérusse, V. et al. Changes in alcohol habits among workers during the confinement of COVID-19: Results of a Canadian cross-sectional survey. Substance Abuse: Res. Treatment 15, 11782218211033298 (2021).

    Google Scholar 

  • Pomazal, R. et al. Changes in alcohol consumption during the COVID-19 pandemic: Evidence from wisconsin. Int. J. Environ. Res. Public Health 20(7), 5301 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mota, I. A., de Oliveira Sobrinho, G. D., Morais, I. P. S. & Dantas, T. F. Impact of COVID-19 on eating habits, physical activity and sleep in Brazilian healthcare professionals. Arq. Neuropsiquiatr. 79, 429–436 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calina, D. et al. COVID-19 pandemic and alcohol consumption: Impacts and interconnections. Toxicol. Rep. 8, 529–535 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saladino, V., Algeri, D. & Auriemma, V. The psychological and social impact of Covid-19: new perspectives of well-being. Front. Psychol. 1, 2520 (2020).

    Google Scholar 

  • Orgilés, M., Morales, A., Delvecchio, E., Mazzeschi, C. & Espada, J. P. Immediate psychological effects of the COVID-19 quarantine in youth from Italy and Spain. Front. Psychol. 1, 2986 (2020).

    Google Scholar 

  • Brooks, S. K. et al. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. The Lancet 395(10227), 912–920 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bai, YaMei et al. Survey of stress reactions among health care workers involved with the SARS outbreak. Psychiatr. Serv. 55(9), 1055–1057 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Lai, J. et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw. Open 3(3), e203976 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Kock, J. H. et al. A rapid review of the impact of COVID-19 on the mental health of healthcare workers: implications for supporting psychological well-being. BMC Public Health 21(1), 1–18 (2021).

    Google Scholar 

  • Lalmuanawma, S., Hussain, J. & Chhakchhuak, L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 139, 110059 (2020).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, X., Ma, X., Hong, Na., Su, L., Ma, Y., He, J., Jiang, H., Liu, C., Shan, G., Zhu, W., et al. Forecasting the worldwide spread of COVID-19 based on logistic model and SEIR model. MedRxiv (2020).

  • Gupta, A. K., Singh, V., Mathur, P. & Travieso-Gonzalez, C. M. Prediction of COVID-19 pandemic measuring criteria using support vector machine, prophet and linear regression models in Indian scenario. J. Interdiscip. Math. 24(1), 89–108 (2021).

    Article 

    Google Scholar 

  • Ekum, M. & Ogunsanya, A. Application of hierarchical polynomial regression models to predict transmission of COVID-19 at global level. Int. J. Clin. Biostat. Biom. 6(1), 27 (2020).

    Google Scholar 

  • Vaishya, R., Javaid, M., Khan, I. H. & Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metabolic Syndrome Clin. Res. Rev. 14(4), 337–339 (2020).

    Article 

    Google Scholar 

  • Mondal, M. R. H., Bharati, S. & Podder, P. Diagnosis of COVID-19 using machine learning and deep learning: A review. Curr. Med. Imaging 17, 1403–1418 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Gambhir, E., Jain, R., Gupta, A., Tomer, U. Regression analysis of COVID-19 using machine learning algorithms. In 2020 International Conference on Smart Electronics and Communication (ICOSEC), 65–71 (IEEE, 2020).

  • Kushwaha, S. et al. Significant applications of machine learning for COVID-19 pandemic. J. Ind. Integrat. Manag. 5, 453–479 (2020).

    Article 

    Google Scholar 

  • Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S. & Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief 29, 105340 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kucharski, A. J. et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The Lancet Infect. Dis. 20, 553–558 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zivkovic, M., Bacanin, N., Djordjevic, A., Antonijevic, M., Strumberger, I., Rashid, T.A., et al. Hybrid genetic algorithm and machine learning method for covid-19 cases prediction. In Proceedings of International Conference on Sustainable Expert Systems, 169–184 (Springer, 2021).

  • Vrindavanam, J., Srinath, R., Shankar, H. H., Nagesh, G. Machine learning based COVID-19 cough classification models-a comparative analysis. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 420–426 (IEEE, 2021).

  • Rezapour, M. & Elmshaeuser, S. K. Artificial intelligence-based analytics for impacts of COVID-19 and online learning on college students’ mental health. PLoS ONE 17(11), e0276767 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rezapour, M., & Varady, C. A. A machine learning analysis of the relationship between some underlying medical conditions and COVID-19 susceptibility. arXiv preprint arXiv:2112.12901 (2021).

  • Conroy, D. A. et al. The effects of COVID-19 stay-at-home order on sleep, health, and working patterns: a survey study of US health care workers. J. Clin. Sleep Med. 17, 185–191 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conroy, D., & Goldstein, C. COVID Isolation on Sleep and Health in Healthcare Workers. Ann Arbor, MI: Inter-university Consortium for Political and Social Research (distributor), 2020-11-20. (Online).

  • Greenwood, P. E., Nikulin, Michael S, A guide to chi-squared testing, John Wiley \& Sons, 1996.

  • Vergara, J. R. & Estévez, P. A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 24, 175–186 (2014).

    Article 

    Google Scholar 

  • Menard, S. Applied Logistic Regression Analysis (Sage, 2002).

  • Wright, R. E. Logistic regression (American Psychological Association, 1995).

  • Steinwart, I., & Christmann, A. Support Vector Machines (Springer, 2008).

  • Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28 (1998).

    Article 

    Google Scholar 

  • Wang, S.-C. Artificial neural network. In Interdisciplinary Computing in Java Programming, 81–100 (Springer, 2003).

  • Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception, 65–93 (Elsevier, 1992).

  • Goodfellow, I., Bengio, Y., & Courville, A. Deep Learning (MIT Press, 2016).

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Bishop, C. M., & Nasrabadi, N. M. Pattern Recognition and Machine Learning (Springer, 2006).

  • Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.

  • Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., et al. Xgboost: extreme gradient boosting. R package version 0.4–2, 1, 1–4 (2015).

  • Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 1 (2017).

    Google Scholar 

  • Dorogush, A. V., Ershov, V., Gulin, A. CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.

  • Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    Article 
    MATH 

    Google Scholar 

  • Chaturvedi, A., Green, P. E. & Caroll, J. D. K-modes clustering. J. Classif. 18(1), 35–55 (2001).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Boschuetz, N., Cheng, S., Mei, L. & Loy, V. M. Changes in alcohol use patterns in the United States during COVID-19 pandemic. WMJ 119, 171–176 (2020).

    PubMed 

    Google Scholar 

  • Acuff, S. F., Strickland, J. C., Tucker, J. A. & Murphy, J. G. Changes in alcohol use during COVID-19 and associations with contextual and individual difference variables: A systematic review and meta-analysis. Psychol. Addict. Behav. 36, 1 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Melnyk, B. M. et al. Associations among nurses’ mental/physical health, lifestyle behaviors, shift length, and workplace wellness support during COVID-19: important implications for health care systems. Nurs. Adm. Q. 46, 5 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cooper, M. L., Russell, M. & Frone, M. R. Work stress and alcohol effects: A test of stress-induced drinking. J. Health Soc. Behav. 1, 260–276 (1990).

    Article 

    Google Scholar 

  • Ahn, T. Reduction of working time: Does it lead to a healthy lifestyle?. Health Econ. 25, 969–983 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Frone, M. R. Work stress and alcohol use. Alcohol Res. Health 23, 284 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huber, B. C., Steffen, J., Schlichtiger, J. & Brunner, S. Altered nutrition behavior during COVID-19 pandemic lockdown in young adults. Eur. J. Nutrit. 60(5), 2593–2602 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yeomans, M. R., Caton, S. & Hetherington, M. M. Alcohol and food intake. Curr. Opin. Clin. Nutrit. Metabolic Care 6(6), 639–644 (2003).

    Article 

    Google Scholar 

  • Villanueva-Blasco, V. J. et al. Age and living situation as key factors in understanding changes in alcohol use during COVID-19 confinement. Int. J. Environ. Res. Public Health 18, 11471 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Härkönen, J. T. A. P. M. Age, period and cohort analysis of light and binge drinking in Finland, 1968–2008. Alcoh. Alcoh. 46, 349–356 (2011).

    Article 

    Google Scholar 

  • Hamilton, J. L., Hamlat, E. J., Stange, J. P., Abramson, L. Y. & Alloy, L. B. Pubertal timing and vulnerabilities to depression in early adolescence: Differential pathways to depressive symptoms by sex. J. Adoles. 37, 165–174 (2014).

    Article 

    Google Scholar 

  • Villanueva-Blasco, V. J. et al. Changes in alcohol consumption pattern based on gender during COVID-19 confinement in Spain. In. J. Environ. Res. Public Health 18, 8028 (2021).

    Article 
    CAS 

    Google Scholar 

  • Verma, R., Balhara, Y. P. S. & Gupta, C. S. Gender differences in stress response: Role of developmental and biological determinants. Ind. Psychiatry J. 20, 4 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, H. & Pittman, D. J. Regional differences in alcohol consumption and drinkers’ attitudes toward drinking. Am. J. Drug Alcoh. Abuse 19, 523–538 (1993).

    Article 
    CAS 

    Google Scholar 

  • Brenner, A. B., Bauermeister, J. A. & Zimmerman, M. A. Neighborhood variation in adolescent alcohol use: Examination of socioecological and social disorganization theories. J. Stud. Alcohol Drugs 72, 651–659 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imaki, M., Hatanaka, Y., Ogawa, Y., Yoshida, Y. & Tanada, S. An epidemiological study on relationship between the hours of sleep and life style factors in Japanese factory workers. J. Physiol. Anthropol. Appl. Hum. Sci. 21, 115–120 (2002).

    Article 

    Google Scholar 

  • Miller, M. B., DiBello, A. M., Lust, S. A., Carey, M. P. & Carey, K. B. Adequate sleep moderates the prospective association between alcohol use and consequences. Addict. Behav. 63, 23–28 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, C. et al. The effects of sleep quality and resilience on perceived stress, dietary behaviors, and alcohol misuse: a mediation-moderation analysis of higher education students from Asia, Europe, and North America during the COVID-19 pandemic. Nutrients 13, 442 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chartier, K. G., Guidry, J. P. D., Lee, C. A. & Buckley, T. D. At home and online during the early months of the COVID-19 pandemic and the relationship to alcohol consumption in a national sample of US adults,”. PLoS ONE 16(11), e0259947 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Engels, R. C. M. E., Hermans, R., Van Baaren, R. B., Hollenstein, T. & Bot, S. M. Alcohol portrayal on television affects actual drinking behaviour. Alcoh. Alcoh. 44, 244–249 (2009).

    Article 

    Google Scholar 

  • Stainback, K., Hearne, B. N. & Trieu, M. M. COVID-19 and the 24/7 news cycle: Does COVID-19 news exposure affect mental health?. Socius 6, 2378023120969339 (2020).

    Article 

    Google Scholar 

  • Lavin, J., Pallister, C. & Greenwood, L. The government must do more to raise awareness of the links between alcohol and obesity, rather than treating them as separate issues. Perspect. Public Health 136, 123–124 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lourenço, S., Oliveira, A. & Lopes, C. The effect of current and lifetime alcohol consumption on overall and central obesity. Eur. J. Clin. Nutr. 66, 813–818 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Youngerman, B., & Kittleson, M. J. The Truth About Alcohol (Infobase Publishing, 2005).

  • Tebar, W. R. et al. Increased screen time is associated with alcohol desire and sweetened foods consumption during the COVID-19 pandemic. Front. Nutrit. 8, 630586 (2021).

    Article 

    Google Scholar 

  • Schmits, E. & Glowacz, F. Changes in alcohol use during the COVID-19 pandemic: Impact of the lockdown conditions and mental health factors. Int. J. Ment. Heal. Addict. 20, 1147–1158 (2022).

    Article 
    CAS 

    Google Scholar 

  • Caluzzi, G. et al. Beyond ‘drinking occasions’: examining complex changes in drinking practices during COVID-19. Drug Alcohol Rev. 41, 1267–1274 (2022).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.