March 8, 2025

Health Benefit

Healthy is Rich, Today's Best Investment

Systematic analysis of healthcare big data analytics for efficient care and disease diagnosing

Systematic analysis of healthcare big data analytics for efficient care and disease diagnosing
  • Rahman, F. & Slepian, M. J. Application of big-data in healthcare analytics—Prospects and challenges. In 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) 13–16 (2016).

  • Khan, N. et al. Big data: Survey, technologies, opportunities, and challenges. Sci. World J. 2014, 1–18 (2014).

    Google Scholar 

  • Groves, P., Kayyali, B., Knott, D. & Van Kuiken, S. The ‘big data ‘revolution in healthcare. In McKinsey Quarterly (2013).

  • Andreu-Perez, J., Poon, C. C., Merrifield, R. D., Wong, S. T. & Yang, G.-Z. Big data for health. IEEE J. Biomed. Health Inform. 19, 1193–1208 (2015).

    Article 

    Google Scholar 

  • Kumar, M. A., Vimala, R. & Britto, K. A. A cognitive technology based healthcare monitoring system and medical data transmission. Measurement 146, 322–332 (2019).

    Article 
    ADS 

    Google Scholar 

  • Chen, H., Khan, S., Kou, B., Nazir, S., Liu, W. & Hussain, A. A smart machine learning model for the detection of brain hemorrhage diagnosis based internet of things in smart cities. Complexity 2020 (2020).

  • Liang, Y. & Zhao, L. Intelligent hospital appointment system based on health data bank. Procedia Comput. Sci. 159, 1880–1889 (2019).

    Article 

    Google Scholar 

  • Galetsi, P. & Katsaliaki, K. A review of the literature on big data analytics in healthcare. J. Oper. Res. Soc. 1–19 (2019).

  • Lindell, J. What are big data and analytics?. In Analytics and Big Data for Accountants (2018).

  • Alharthi, H. Healthcare predictive analytics: An overview with a focus on Saudi Arabia. J. Infect. Public Health 11, 749–756 (2018).

    Article 

    Google Scholar 

  • Lee, C. et al. “Big healthcare data analytics: Challenges and applications. In Handbook of Large-Scale Distributed Computing in Smart Healthcare 11–41 (Springer, 2017).

    Chapter 

    Google Scholar 

  • Hussain, A., Nazir, S., Khan, S. & Ullah, A. Analysis of PMIPv6 extensions for identifying and assessing the efforts made for solving the issues in the PMIPv6 domain: A systematic review. Comput. Netw. 179, 107366 (2020).

    Article 

    Google Scholar 

  • Khan, H.-U. et al. Systematic analysis of safety and security risks in smart homes. Comput. Mater. Contin. 68, 1409–1428 (2021).

    Google Scholar 

  • Khan, S., Nazir, S. & Khan, H.-U. Analysis of navigation assistants for blind and visually impaired people: A systematic review. IEEE Access 9, 26712–26734 (2021).

    Article 

    Google Scholar 

  • Nazir, S. et al. A comprehensive analysis of healthcare big data management, analytics and scientific programming. IEEE Access 8, 95714–95733 (2020).

    Article 

    Google Scholar 

  • Kitchin, R. Big Data, new epistemologies and paradigm shifts. Big Data Soc. 1, 2053951714528481 (2014).

    Article 

    Google Scholar 

  • Cox, M. & Ellsworth, D. Application-controlled demand paging for out-of-core visualization. In Proceedings. Visualization’97 (Cat. No. 97CB36155) 235–244 (1997).

  • Syed, L., Jabeen, S., Manimala, S. & Elsayed, H. A. Data science algorithms and techniques for smart healthcare using IoT and big data analytics. In Smart Techniques for a Smarter Planet 211–241 (Springer, 2019).

    Chapter 

    Google Scholar 

  • Venkatesh, R., Balasubramanian, C. & Kaliappan, M. Development of big data predictive analytics model for disease prediction using machine learning technique. J. Med. Syst. 43, 272 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kaur, P., Sharma, M. & Mittal, M. Big data and machine learning based secure healthcare framework. Procedia Comput. Sci. 132, 1049–1059 (2018).

    Article 

    Google Scholar 

  • Patel, H. B. & Gandhi, S. A review on big data analytics in healthcare using machine learning approaches. In 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) 84–90 (2018).

  • Rumbold, J. M. M., O’Kane, M., Philip, N. & Pierscionek, B. K. Big Data and diabetes: The applications of Big Data for diabetes care now and in the future. Diabetic Med. (2019).

  • Oxman, A. D. et al. Users’ guides to the medical literature: VI. How to use an overview. JAMA 272, 1367–1371 (1994).

    Article 
    CAS 

    Google Scholar 

  • Swingler, G. H., Volmink, J. & Ioannidis, J. P. Number of published systematic reviews and global burden of disease: database analysis. BMJ 327, 1083–1084 (2003).

    Article 

    Google Scholar 

  • Research, C. I. O. H. Randomized controlled trials registration/application checklist (12/2006). Available at: Accessed 22 June 2009.

  • Young, C. & Horton, R. Putting clinical trials into context. Lancet 366, 107–107 (2005).

    Article 

    Google Scholar 

  • P. Group, Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).

    Article 

    Google Scholar 

  • Kitchenham, B. & Charters, S. Guidelines for performing systematic literature reviews in software engineering (2007).

  • Van Solingen, R., Basili, V., Caldiera, G. & Rombach, H. D. Goal question metric (gqm) approach. Encycl. Softw. Eng. (2002).

  • Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M. & Khalil, M. Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80, 571–583 (2007).

    Article 

    Google Scholar 

  • Achimugu, P., Selamat, A., Ibrahim, R. & Mahrin, M. N. R. A systematic literature review of software requirements prioritization research. Inf. Softw. Technol. 56, 568–585 (2014).

    Article 

    Google Scholar 

  • Nazir, S., Ali, Y., Ullah, N. & García-Magariño, I. Internet of things for healthcare using effects of mobile computing: A systematic literature review. Wirel. Commun. Mobile Comput. 109, 5931315 (2019).

    Google Scholar 

  • Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering 1–10 (2014).

  • Kable, A. K., Pich, J. & Maslin-Prothero, S. E. A structured approach to documenting a search strategy for publication: A 12 step guideline for authors. Nurse Educ. Today 32, 878–886 (2012).

    Article 

    Google Scholar 

  • Helmer, A., Kretschmer, F., Müller, F., Eichelberg, M., Deparade, R., Tegtbur, U. et al. Integration of medical models in personal health records using the example of rehabilitation training for cardiopulmonary patients. In 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI) 1887–1892 (2011).

  • Tian, M. Integrated feature based medical image retrieval. In 2011 International Conference on Control, Automation and Systems Engineering (CASE) 1–3 (2011).

  • Chaves, R., Ramírez, J., Górriz, J. M., Illán, I. A. & Salas-Gonzalez, D. FDG and PIB biomarker PET analysis for the Alzheimer’s disease detection using Association Rules. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) 2576–2579 (2012).

  • Chute, C. G. Obstacles and options for big-data applications in biomedicine: The role of standards and normalizations. In 2012 IEEE International Conference on Bioinformatics and Biomedicine (2012).

  • Goel, A. & Chandra, N. A prototype model for secure storage of medical images and method for detail analysis of patient records with PACS. In 2012 International Conference on Communication Systems and Network Technologies 167–170 (2012).

  • Huang, H. & Hsiao, I. Use of anatomical information in a Bayesian reconstruction with an edge-preserving median prior. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) 3321–3323 (2012).

  • López, C. M., Welkenhuysen, M., Musa, S., Eberle, W., Bartic, C., Puers, R. et al. Towards a noise prediction model for in vivo neural recording. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 759–762 (2012).

  • Ng, H., Chuang, C. & Hsu, C. Extraction and analysis of structural features of lateral ventricle in brain medical images. In 2012 Sixth International Conference on Genetic and Evolutionary Computing 35–38 (2012).

  • Patel, A. B., Birla, M. & Nair, U. Addressing big data problem using Hadoop and Map Reduce. In 2012 Nirma University International Conference on Engineering (NUiCONE) 1–5 (2012).

  • Zheng, G., Yu, L., Feng, Y., Han, Z., Chen, L., Zhang, S. et al. Seizure prediction model based on method of common spatial patterns and support vector machine. In 2012 IEEE International Conference on Information Science and Technology 29–34 (2012).

  • Li, L., Bagheri, S., Goote, H., Hasan, A. & Hazard, G. Risk adjustment of patient expenditures: A big data analytics approach. In 2013 IEEE International Conference on Big Data 12–14 (2013).

  • Loshin, D. Chapter 8—Developing big data applications. In Big Data Analytics (ed. Loshin, D.) 73–81 (Morgan Kaufmann, 2013).

    Chapter 
    MATH 

    Google Scholar 

  • Loshin, D. Chapter 9—NoSQL data management for big data. In Big Data Analytics (ed. Loshin, D.) 83–90 (Morgan Kaufmann, 2013).

    Chapter 
    MATH 

    Google Scholar 

  • Loshin, D. Chapter 1—Market and business drivers for big data analytics. In Big Data Analytics (ed. Loshin, D.) 1–9 (Morgan Kaufmann, 2013).

    MATH 

    Google Scholar 

  • Purkayastha, S. & Braa, J. Big data analytics for developing countries–Using the cloud for operational BI in health. Electron. J. Inf. Syst. Dev. Ctries. 59, 1–17 (2013).

    Article 

    Google Scholar 

  • Lin, C.-H., Huang, L.-C., Chou, S.-C. T., Liu, C.-H., Cheng, H.-F. & Chiang, I. J. Temporal event tracing on big healthcare data analytics. In 2014 IEEE International Congress on Big Data 281–287 (2014)

  • Martínez, J. G., Ramos-Becerril, F. J., Leija, L., López, F., García, U., Vera, A. et al. Development of an electronic equipment for the pre medical diagnose in the progress of diabetic foot disease. In 2014 International Conference on Control, Decision and Information Technologies (CoDIT) 679–683 (2014).

  • Mian, M., Teredesai, A., Hazel, D., Pokuri, S. & Uppala, K. Work in progress—In-memory analysis for healthcare big data. In 2014 IEEE International Congress on Big Data 778–779 (2014).

  • Panahiazar, M., Taslimitehrani, V., Jadhav, A. & Pathak, J. Empowering personalized medicine with big data and semantic web technology: Promises, challenges, and use cases. In 2014 IEEE International Conference on Big Data (Big Data) 790–795 (2014).

  • Vargheese, R. Dynamic protection for critical health care systems using cisco CWS: Unleashing the power of big data analytics. In 2014 Fifth International Conference on Computing for Geospatial Research and Application 77–81 (2014).

  • Archenaa, J. & Anita, E. A. M. A survey of big data analytics in healthcare and government. Procedia Comput. Sci. 50, 408–413 (2015).

    Article 

    Google Scholar 

  • Boman, M. & Sanches, P. Sensemaking in intelligent health data analytics. KI Künstliche Intell. 29, 143–152 (2015).

    Article 

    Google Scholar 

  • Chong, D. & Shi, H. Big data analytics: A literature review. J. Manag. Anal. 2, 175–201 (2015).

    Google Scholar 

  • Dantanarayana, G., Sahama, T. & Wikramanayake, G. Quality of information for quality of life: Healthcare big data analytics. In 2015 Fifteenth International Conference on Advances in ICT for Emerging Regions (ICTer) 281–281 (2015).

  • Gomathi, S. & Narayani, V. Implementing big data analytics to predict systemic lupus erythematosus. In 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) 1–5 (2015).

  • Hussain, S. & Lee, S. Semantic transformation model for clinical documents in big data to support healthcare analytics. In 2015 Tenth International Conference on Digital Information Management (ICDIM) 99–102 (2015).

  • Kuo, M., Chrimes, D., Moa, B. & Hu, W. Design and construction of a big data analytics framework for health applications. In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity) 631–636 (2015).

  • Mehmood, R. & Graham, G. Big data logistics: A health-care transport capacity sharing model. Procedia Comput. Sci. 64, 1107–1114 (2015).

    Article 

    Google Scholar 

  • Raj, P., Raman, A., Nagaraj, D. & Duggirala, S. Big data analytics for healthcare. In High-Performance Big-Data Analytics Computer Communications and Networks 1525–1525 (Springer, Cham, 2015).

    Google Scholar 

  • Viceconti, M., Hunter, P. & Hose, R. Big data, big knowledge: Big data for personalized healthcare. IEEE J. Biomed. Health Inform. 19, 1209–1215 (2015).

    Article 

    Google Scholar 

  • Wang, M. D. Biomedical big data analytics for patient-centric and outcome-driven precision health. In 2015 IEEE 39th Annual Computer Software and Applications Conference 1–2 (2015).

  • Batarseh, F. A. & Latif, E. A. Assessing the quality of service using big data analytics: With application to healthcare. Big Data Res. 4, 13–24 (2016).

    Article 

    Google Scholar 

  • Buzzi, M. C. et al. Facebook: A new tool for collecting health data?. Multimed. Tools Appl. 76, 10677–10700 (2016).

    Article 

    Google Scholar 

  • Chauhan, R., Jangade, R. & Mudunuru, V. K. A cloud based environment for big data analytics in healthcare. In International Conference on Soft Computing and Pattern Recognition 315–321 (2016).

  • Stefano, A. D., Corte, A. L., Lió, P. & Scatá, M. Bio-inspired ICT for big data management in healthcare. In Intelligent Agents in Data-intensive Computing 1–26 (Springer, 2016).

    Google Scholar 

  • Gupta, S. & Tripathi, P. An emerging trend of big data analytics with health insurance in India. In 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH) 64–69 (2016).

  • Haas, M. et al. Big data to smart data in Alzheimer’s disease: Real-world examples of advanced modeling and simulation. Alzheimers Dement. 12, 1022–1030 (2016).

    Article 

    Google Scholar 

  • Jiang, P. et al. An intelligent information forwarder for healthcare big data systems with distributed wearable sensors. IEEE Syst. J. 10, 1147–1159 (2016).

    Article 
    ADS 

    Google Scholar 

  • Kankanhalli, A., Hahn, J., Tan, S. & Gao, G. Big data and analytics in healthcare: Introduction to the special section. Inf. Syst. Front. 18, 233–235 (2016).

    Article 

    Google Scholar 

  • Kashyap, H., Ahmed, H. A., Hoque, N., Roy, S. & Bhattacharyya, D. K. Big data analytics in bioinformatics: Architectures, techniques, tools and issues. Netw. Model. Anal. Health Inform. Bioinform. 5, 28 (2016).

    Article 

    Google Scholar 

  • Lv, Z., Chirivella, J. & Gagliardo, P. Bigdata oriented multimedia mobile health applications. J. Med. Syst. 40, 120 (2016).

    Article 

    Google Scholar 

  • Pandey, M. K. & Subbiah, K. A novel storage architecture for facilitating efficient analytics of health informatics big data in cloud. In 2016 IEEE International Conference on Computer and Information Technology (CIT) 578–585 (2016).

  • Plachkinova, M., Vo, A., Bhaskar, R. & Hilton, B. A conceptual framework for quality healthcare accessibility: A scalable approach for big data technologies. Inf. Syst. Front. 20, 289–302 (2016).

    Article 

    Google Scholar 

  • Rahman, F. & Slepian, M. J. Application of big-data in healthcare analytics—Prospects and challenges. In 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) 13–16 (2016).

  • Rallapalli, S., Gondkar, R. R. & Ketavarapu, U. P. K. Impact of processing and analyzing healthcare big data on cloud computing environment by implementing hadoop cluster. Procedia Comput. Sci. 85, 16–22 (2016).

    Article 

    Google Scholar 

  • Sakr, S. & Elgammal, A. Towards a comprehensive data analytics framework for smart healthcare services. Big Data Res. 4, 44–58 (2016).

    Article 

    Google Scholar 

  • Xu, B. et al. Healthcare data analytics: Using a metadata annotation approach for integrating electronic hospital records. J. Manag. Anal. 3, 136–151 (2016).

    Google Scholar 

  • Tresp, V. et al. Going digital: A survey on digitalization and large-scale data analytics in healthcare. Proc. IEEE 104, 2180–2206 (2016).

    Article 

    Google Scholar 

  • Straton, N., Hansen, K., Mukkamala, R. R., Hussain, A., Gronli, T., Langberg, H. et al. Big social data analytics for public health: Facebook engagement and performance. In 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom) 1–6 (2016).

  • Abouelmehdi, K., Beni-Hssane, A., Khaloufi, H. & Saadi, M. Big data security and privacy in healthcare: A review. Procedia Comput. Sci. 113, 73–80 (2017).

    Article 

    Google Scholar 

  • Alonso, S. G., de la Torre, Diez I., Rodrigues, J. J., Hamrioui, S. & Lopez-Coronado, M. A systematic review of techniques and sources of big data in the healthcare sector. J. Med. Syst. 41, 183 (2017).

    Article 

    Google Scholar 

  • Anjum, A. et al. Big data analytics in healthcare: A cloud-based framework for generating insights. In Cloud Computing 153–170 (Springer, 2017).

    Chapter 

    Google Scholar 

  • Barik, R. K., Dubey, H. & Mankodiya, K. SOA-FOG: Secure service-oriented edge computing architecture for smart health big data analytics. In 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP) 477–481 (2017).

  • Cano, I., Tenyi, A., Vela, E., Miralles, F. & Roca, J. Perspectives on big data applications of health information. Curr. Opin. Syst. Biol. 3, 36–42 (2017).

    Article 

    Google Scholar 

  • A. Di Meglio and M. Manca, “From Big Data to Big Insights: The Role of Platforms in Healthcare IT,” in New Perspectives in Medical Records, ed: Springer, 2017, pp. 33–47.

  • Manogaran, G. et al. Big data analytics in healthcare Internet of Things. In Innovative Healthcare Systems for the 21st Century 263–284 (Springer, 2017).

    Chapter 

    Google Scholar 

  • Plageras, A. P., Stergiou, C., Kokkonis, G., Psannis, K. E., Ishibashi, Y., Kim, B. et al. Efficient large-scale medical data (eHealth Big Data) analytics in Internet of Things. In 2017 IEEE 19th Conference on Business Informatics (CBI) 21–27 (2017).

  • Pramanik, M. I., Lau, R. Y. K., Demirkan, H. & Azad, M. A. K. Smart health: Big data enabled health paradigm within smart cities. Expert Syst. Appl. 87, 370–383 (2017).

    Article 

    Google Scholar 

  • Spanoudakis, G., Katrakazas, P., Koutsouris, D., Kikidis, D., Bibas, A. & Pontopidan, N. H. Public health policy for management of hearing impairments based on big data analytics: EVOTION at genesis. In 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE) 525–530 (2017).

  • Wu, J., Li, H., Liu, L. & Zheng, H. Adoption of big data and analytics in mobile healthcare market: An economic perspective. Electron. Commer. Res. Appl. 22, 24–41 (2017).

    Article 

    Google Scholar 

  • Aceto, G., Persico, V. & Pescape, A. The role of Information and Communication Technologies in healthcare: Taxonomies, perspectives, and challenges. J. Netw. Comput. Appl. 107, 125–154 (2018).

    Article 

    Google Scholar 

  • Antoniou, C., Dimitriou, L. & Pereira, F. Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling (Elsevier, 2018).

    Google Scholar 

  • Bates, D. W., Heitmueller, A., Kakad, M. & Saria, S. Why policymakers should care about “big data” in healthcare. Health Policy Technol. 7, 211–216 (2018).

    Article 

    Google Scholar 

  • Choi, T.-M., Wallace, S. W. & Wang, Y. Big data analytics in operations management. Prod. Oper. Manag. 27, 1868–1883 (2018).

    Article 

    Google Scholar 

  • Forestiero, A. & Papuzzo, G. Distributed algorithm for big data analytics in healthcare. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI) 776–779 (2018).

  • Ganesh, S. & Talukder, A. K. Formal methods, artificial intelligence, big-data analytics, and knowledge engineering in medical care to reduce disease burden and health disparities. In International Conference on Big Data Analytics 307–321 (2018).

  • Giacalone, M., Cusatelli, C. & Santarcangelo, V. Big data compliance for innovative clinical models. Big Data Res. 12, 35–40 (2018).

    Article 

    Google Scholar 

  • Guha, S. & Kumar, S. Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap. Prod. Oper. Manag. 27, 1724–1735 (2018).

    Article 

    Google Scholar 

  • Gupta, V., Singh Gill, H., Singh, P. & Kaur, R. An energy efficient fog-cloud based architecture for healthcare. J. Stat. Manag. Syst. 21, 529–537 (2018).

    Google Scholar 

  • Hopp, W. J., Li, J. & Wang, G. Big data and the precision medicine revolution. Prod. Oper. Manag. 27, 1647–1664 (2018).

    Article 

    Google Scholar 

  • Huang, H. K. Big data in PACS-based multimedia medical imaging informatics. In PACS Based Multimedia Imaging Informatics (ed Huang, H.) 575–589 (2018).

  • Istepanian, R. S. H. & Al-Anzi, T. m-Health 2.0: New perspectives on mobile health, machine learning and big data analytics. Methods 151, 34–40 (2018).

    Article 
    CAS 

    Google Scholar 

  • Khaloufi, H., Abouelmehdi, K., Beni-hssane, A. & Saadi, M. Security model for big healthcare data lifecycle. Procedia Comput. Sci. 141, 294–301 (2018).

    Article 

    Google Scholar 

  • Krittanawong, C., Johnson, K. W., Hershman, S. G. & Tang, W. H. W. Big data, artificial intelligence, and cardiovascular precision medicine. Expert Rev. Precis. Med. Drug Dev. 3, 305–317 (2018).

    Article 

    Google Scholar 

  • Ma, X., Wang, Z., Zhou, S., Wen, H. & Zhang, Y. Intelligent healthcare systems assisted by data analytics and mobile computing. In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) 1317–1322 (2018).

  • Manogaran, G. et al. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 82, 375–387 (2018).

    Article 

    Google Scholar 

  • Mehta, N. & Pandit, A. Concurrence of big data analytics and healthcare: A systematic review. Int. J. Med. Inform. 114, 57–65 (2018).

    Article 

    Google Scholar 

  • Miller, J. B. Big data and biomedical informatics: Preparing for the modernization of clinical neuropsychology. Clin. Neuropsychol. 33, 287–304 (2018).

    Article 

    Google Scholar 

  • Moutselos, K., Kyriazis, D. & Maglogiannis, I. A web based modular environment for assisting health policy making utilizing big data analytics. In 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA) 1–5 (2018).

  • Nair, L. R., Shetty, S. D. & Shetty, S. D. Applying spark based machine learning model on streaming big data for health status prediction. Comput. Electr. Eng. 65, 393–399 (2018).

    Article 

    Google Scholar 

  • Pashazadeh, A. & Navimipour, N. J. Big data handling mechanisms in the healthcare applications: A comprehensive and systematic literature review. J. Biomed. Inform. 82, 47–62 (2018).

    Article 

    Google Scholar 

  • Ravishankar Rao, A., Clarke, D. & Vargas, M. Building an open health data analytics platform: A case study examining relationships and trends in seniority and performance in healthcare providers. J. Healthc. Inform. Res. 2, 44–70 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sahoo, P. K., Mohapatra, S. K. & Wu, S.-L. SLA based healthcare big data analysis and computing in cloud network. J. Parallel Distrib. Comput. 119, 121–135 (2018).

    Article 

    Google Scholar 

  • Sarkar, B. K. & Sana, S. S. A conceptual distributed framework for improved and secured healthcare system. Int. J. Healthc. Manag. 1–13 (2018).

  • Sebaa, A., Chikh, F., Nouicer, A. & Tari, A. Medical big data warehouse: architecture and system design, a case study: Improving healthcare resources distribution. J. Med. Syst. 42, 59 (2018).

    Article 

    Google Scholar 

  • Shafqat, S., Kishwer, S., Rasool, R. U., Qadir, J., Amjad, T. & Ahmad, H. F. Big data analytics enhanced healthcare systems: A review. J. Supercomput.

  • Sivaparthipan, C. B., Karthikeyan, N. & Karthik, S. Designing statistical assessment healthcare information system for diabetics analysis using big data. Multimed. Tools Appl.

  • Tang, V. et al. An adaptive clinical decision support system for serving the elderly with chronic diseases in healthcare industry. Expert. Syst. 36, e12369 (2018).

    Article 

    Google Scholar 

  • Wang, Y., Kung, L. & Byrd, T. A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 126, 3–13 (2018).

    Article 

    Google Scholar 

  • Agrawal, A. & Choudhary, A. Health services data: Big data analytics for deriving predictive healthcare insights. In Health Services Evaluation 3–18 (2019).

  • Ahmed, M., Choudhury, S. & Al-Turjman, F. Big data analytics for intelligent internet of things. In Artificial Intelligence in IoT 107–127 (Springer, 2019).

    Chapter 

    Google Scholar 

  • Ahmed, Z. & Liang, B. T. Systematically dealing practical issues associated to healthcare data analytics. In Future of Information and Communication Conference 599–613 (2019).

  • Bora, D. J. Chapter 3—Big data analytics in healthcare: A critical analysis. In Big Data Analytics for Intelligent Healthcare Management (eds Dey, N. et al.) 43–57 (Academic Press, 2019).

    Google Scholar 

  • Chanchaichujit, J., Tan, A., Meng, F. & Eaimkhong, S. Internet of Things (IoT) and big data analytics in healthcare. In Healthcare 4.0 17–36 (Springer, 2019).

    Chapter 

    Google Scholar 

  • Cirillo, D. & Valencia, A. Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 58, 161–167 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dey, N., Das, H., Naik, B. & Behera, H. S. Big Data Analytics for Intelligent Healthcare Management (Academic Press, 2019).

    Google Scholar 

  • Din, S. & Paul, A. Smart health monitoring and management system: Toward autonomous wearable sensing for Internet of Things using big data analytics. Future Gener. Comput. Syst. 91, 611–619 (2019).

    Article 

    Google Scholar 

  • Galetsi, P., Katsaliaki, K. & Kumar, S. Values, challenges and future directions of big data analytics in healthcare: A systematic review. Soc. Sci. Med. 241, 112533 (2019).

    Article 
    CAS 

    Google Scholar 

  • Guo, C. & Chen, J. Big data analytics in healthcare: data-driven methods for typical treatment pattern mining. J. Syst. Sci. Syst. Eng. 28, 694–714 (2019).

    Article 

    Google Scholar 

  • Hussain, S. et al. Semantic preservation of standardized healthcare documents in big data. Int. J. Med. Inform. 129, 133–145 (2019).

    Article 

    Google Scholar 

  • Mehta, N., Pandit, A. & Shukla, S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. J. Biomed. Inform. 100, 103311 (2019).

    Article 

    Google Scholar 

  • Muniasamy, A., Tabassam, S., Hussain, M. A., Sultana, H., Muniasamy, V. & Bhatnagar, R. Deep learning for predictive analytics in healthcare. In International Conference on Advanced Machine Learning Technologies and Applications 32–42 (2019).

  • Palanisamy, V. & Thirunavukarasu, R. Implications of big data analytics in developing healthcare frameworks–A review. J. King Saud Univ. Comput. Inf. Sci. 31, 415–425 (2019).

    Google Scholar 

  • Rajabion, L., Shaltooki, A. A., Taghikhah, M., Ghasemi, A. & Badfar, A. Healthcare big data processing mechanisms: The role of cloud computing. Int. J. Inf. Manag. 49, 271–289 (2019).

    Article 

    Google Scholar 

  • Ramasamy, V., Gomathy, B. & Verma, R. K. Smart HIV/AIDS digital system using big data analytics. In Progress in Advanced Computing and Intelligent Engineering 415–421 (Springer, 2019).

    Chapter 

    Google Scholar 

  • Razzak, M. I., Imran, M. & Xu, G. Big data analytics for preventive medicine. Neural Comput. Appl.

  • Reiz, A. N., de la Hoz, M. A. & García, M. S. Big data analysis and machine learning in intensive care units. Med. Intensiva 43, 416–426 (2019).

    Article 

    Google Scholar 

  • Saheb, T. & Izadi, L. Paradigm of IoT big data analytics in the healthcare industry: A review of scientific literature and mapping of research trends. Telematics Inform. 41, 70–85 (2019).

    Article 

    Google Scholar 

  • Sahoo, A. K. et al. Chapter 9—Intelligence-based health recommendation system using big data analytics. In Big Data Analytics for Intelligent Healthcare Management (eds Dey, N. et al.) 227–246 (Academic Press, 2019).

    Google Scholar 

  • Shahbaz, M., Gao, C., Zhai, L., Shahzad, F. & Hu, Y. Investigating the adoption of big data analytics in healthcare: The moderating role of resistance to change. J. Big Data 6, 6 (2019).

    Article 

    Google Scholar 

  • Sivaparthipan, C. B. et al. Innovative and efficient method of robotics for helping the Parkinson’s disease patient using IoT in big data analytics. Trans. Emerg. Telecommun. Technol. 31, e3838 (2019).

    Google Scholar 

  • Sousa, M. J., Pesqueira, A. N. M., Lemos, C., Sousa, M. & Rocha, Ãl. Decision-making based on big data analytics for people management in healthcare organizations. J. Med. Syst. 43, 290 (2019).

    Article 

    Google Scholar 

  • Strang, K. D. Problems with research methods in medical device big data analytics. Int. J. Data Sci. Anal.

  • Thomas, J., Kneale, D., McKenzie, J. E., Brennan, S. E. & Bhaumik, S. Determining the scope of the review and the questions it will address. In Cochrane Handbook for Systematic Reviews of Interventions 13–31 (2019).

  • Wang, Y., Kung, L., Gupta, S. & Ozdemir, S. Leveraging big data analytics to improve quality of care in healthcare organizations: A configurational perspective. Br. J. Manag. 30, 362–388 (2019).

    Article 

    Google Scholar 

  • Zetino, J. & Mendoza, N. Big data and its utility in social work: Learning from the big data revolution in business and healthcare. Soc. Work Public Health 34, 409–417 (2019).

    Article 

    Google Scholar 

  • Nazir, S., Nawaz, M., Adnan, A., Shahzad, S. & Asadi, S. Big data features, applications, and analytics in cardiology—A systematic literature review. IEEE Access 7, 143742–143771 (2019).

    Article 

    Google Scholar 

  • Shah, G., Shah, A. & Shah, M. Panacea of challenges in real-world application of big data analytics in healthcare sector. J. Data Inf. Manag. 1, 107–116 (2019).

    Article 

    Google Scholar 

  • Galetsi, P., Katsaliaki, K. & Kumar, S. Big data analytics in health sector: Theoretical framework, techniques and prospects. Int. J. Inf. Manag. 50, 206–216 (2020).

    Article 

    Google Scholar 

  • Iyengar, S. P., Acharya, H. & Kadam, M. Big data analytics in healthcare using spreadsheets. In Big Data Analytics in Healthcare 155–187 (Springer, 2002).

    Google Scholar 

  • Kumar, S. A. & Venkatesulu, M. BrownBoost classifier-based bloom hash data storage for healthcare big data analytics. In Information and Communication Technology for Sustainable Development 53–69 (Springer, 2020).

    Chapter 

    Google Scholar 

  • Kumar, Y., Sood, K., Kaul, S. & Vasuja, R. Big data analytics and its benefits in healthcare. In Big Data Analytics in Healthcare 3–21 (Springer, 2020).

    Chapter 

    Google Scholar 

  • Naqishbandi, T. A. & Ayyanathan, N. Clinical big data predictive analytics transforming healthcare:-An integrated framework for promise towards value based healthcare. In Advances in Decision Sciences 545–561 (Springer, 2020).

    Google Scholar 

  • Lambay, M. A. & Mohideen, S. P. Big data analytics for healthcare recommendation systems. In 2020 International Conference on System, Computation, Automation and Networking (ICSCAN) 1–6 (2020).

  • Katarya, R. & Jain, S. Exploration of big data analytics in healthcare analytics. In 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP) 1–4 (2020).

  • Javid, T., Faris, M., Beenish, H. & Fahad, M. Cybersecurity and data privacy in the cloudlet for preliminary healthcare big data analytics. In 2020 International Conference on Computing and Information Technology (ICCIT-1441) 1–4 (2020).

  • Leung, C. K., Chen, Y., Hoi, C. S. H., Shang, S. & Cuzzocrea, A. Machine learning and OLAP on big COVID-19 data. In 2020 IEEE International Conference on Big Data (Big Data) 5118–5127 (2020).

  • Akhtar, U., Lee, J. W., Bilal, H. S. M., Ali, T., Khan, W. A. & Lee, S. The impact of big data in healthcare analytics. In 2020 International Conference on Information Networking (ICOIN) 61–63 (2020).

  • Mung, P. S. & Phyu, S. Effective analytics on healthcare big data using ensemble learning. In 2020 IEEE Conference on Computer Applications (ICCA) 1–4 (2002).

  • Georgakopoulos, S. V., Gallos, P. & Plagianakos, V. P. Using big data analytics to detect fraud in healthcare provision. In 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME) 1–3 (2020).

  • Leung, C. K., Chen, Y., Shang, S. & Deng, D. Big data science on COVID-19 Data. In 2020 IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE) 14–21 (2020).

  • Juddoo, S. & George, C. A Qualitative assessment of machine learning support for detecting data completeness and accuracy issues to improve data analytics in big data for the healthcare industry. In 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM) 58–66 (2020).

  • Chauhan, R. & Yafi, E. Big data analytics for prediction modelling in healthcare databases. In 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM) 1–5 (2021).

  • Islam, M., Karim, R., Khatun, M. A. & Reza, S. A research on big data analytics in healthcare industry. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) 1–5 (2020).

  • Leung, C. K., Chen, Y., Hoi, C. S. H., Shang, S., Wen, Y. & Cuzzocrea, A. Big data visualization and visual analytics of COVID-19 data. In 2020 24th International Conference Information Visualisation (IV) 415–420 (2020).

  • Balaji, S. & Prasathkumar, V. Dynamic changes by big data in health care. In 2020 International Conference on Computer Communication and Informatics (ICCCI) 1–4 (2020).

  • Alahmar, A. & Benlamri, R. Optimizing hospital resources using big data analytics with standardized e-clinical pathways. In 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) 650–657 (2020).

  • Sadineni, P. K. Developing a model to enhance the quality of health informatics using big data. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) 1267–1272 (2020).

  • Pramanik, M. I. et al. Healthcare informatics and analytics in big data. Expert Syst. Appl. 152, 113388 (2020).

    Article 

    Google Scholar 

  • Ravikumaran, P., Vimala Devi, K., Kartheeban, K. & Narayanan Prasanth, N. Health data analytics: Framework & review on tool & technology. Mater. Today Proc. (2020).

  • Ramesh, T. & Santhi, V. Exploring big data analytics in health care. Int. J. Intell. Netw. 1, 135–140 (2020).

    Google Scholar 

  • Galetsi, P. & Katsaliaki, K. A review of the literature on big data analytics in healthcare. J. Oper. Res. Soc. 71, 1511–1529 (2020).

    Article 

    Google Scholar 

  • Mehta, N., Pandit, A. & Kulkarni, M. Elements of healthcare big data analytics. In Big Data Analytics in Healthcare 23–43 (Springer, 2020).

    Chapter 

    Google Scholar 

  • Ehwerhemuepha, L. et al. HealtheDataLab–a cloud computing solution for data science and advanced analytics in healthcare with application to predicting multi-center pediatric readmissions. BMC Med. Inform. Decis. Mak. 20, 1–12 (2020).

    Article 

    Google Scholar 

  • Sivasangari, A., Lakshmanan, L., Ajitha, P., Deepa, D. & Jabez, J. Big data analytics for 5G-enabled IoT healthcare. In Blockchain for 5G-Enabled IoT 261.

  • Ma, S. & Huai, J. Approximate computation for big data analytics. SIGWEB Newsl. (2021).

  • Uzunbaz, S. & Aref, W. G. Shared execution techniques for business data analytics over big data streams. In Presented at the 32nd International Conference on Scientific and Statistical Database Management, Vienna, Austria (2020).

  • Chalumporn, G. & Hewett, R. Health data analytics with an opportunistic big data algorithm. In Presented at the Proceedings of the 11th International Conference on Advances in Information Technology, Bangkok, Thailand (2020).

  • Minami, T. & Ohura, Y. Small data analysis for bigger data analysis. In Presented at the 2021 Workshop on Algorithm and Big Data, Fuzhou, China (2021).

  • Chakraborty, C. & Rathi, M. Chapter 2—Smart healthcare systems using big data. In Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics (eds Kautish, P. N. S. & Peng, S.-L.) 17–32 (Academic Press, 2021).

    Chapter 

    Google Scholar 

  • Ilmudeen, A. Chapter 3—Big data-based frameworks for healthcare systems. In Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics (eds Kautish, P. N. S. & Peng, S.-L.) 33–56 (Academic Press, 2021).

    Chapter 

    Google Scholar 

  • Mendhe, C. H., Henderson, N., Srivastava, G. & Mago, V. A scalable platform to collect, store, visualize, and analyze big data in real time. IEEE Trans. Comput. Soc. Syst. 8, 260–269 (2021).

    Article 

    Google Scholar 

  • Sivabalaselvamani, D., Selvakarthi, D., Yogapriya, J., Thiruvenkatasuresh, M. P., Maruthappa, M. & Chandra, A. S. Artificial Intelligence in data-driven analytics for the personalized healthcare. In 2021 International Conference on Computer Communication and Informatics (ICCCI) 1–5 (2021)

  • Harb, H., Mansour, A., Nasser, A., Cruz, E. M. & de la Torre Diez, I. A sensor-based data analytics for patient monitoring in connected healthcare applications. IEEE Sens. J. 21, 974–984 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jones, J. & Jones, J. Optimizing healthcare. In 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM) 1–6 (2021).

  • Hassan, S., Dhali, M., Zaman, F. & Tanveer, M. Big data and predictive analytics in healthcare in Bangladesh: Regulatory challenges. Heliyon 7, e07179 (2021).

    Article 

    Google Scholar 

  • Khan, S. et al. KNN and ANN-based recognition of handwritten pashto letters using zoning features. Mach. Learn. 9, 570–577 (2018).

    Google Scholar 

  • Pant, D., Kumar, V., Kishore, J. & Pal, R. Healthcare data modeling in R. In 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM) 230–233 (2017).

  • Brennan, P. F. & Bakken, S. Nursing needs big data and big data needs nursing. J. Nurs. Scholarsh. 47, 477–484 (2015).

    Article 

    Google Scholar 

  • Sreedevi, A. G., Nitya Harshitha, T., Sugumaran, V. & Shankar, P. Application of cognitive computing in healthcare, cybersecurity, big data and IoT: A literature review. Inform. Process. Manag. 59, 102888 (2022).

    Article 

    Google Scholar 

  • Sinha, A., Hripcsak, G. & Markatou, M. Large datasets in biomedicine: A discussion of salient analytic issues. J. Am. Med. Inform. Assoc. JAMIA 16, 759–767 (2009).

    Article 

    Google Scholar 

  • Alonso-Betanzos, A. & Bolón-Canedo, V. Big-Data analysis, cluster analysis, and machine-learning approaches (2018).

  • Dayal, M. & Singh, N. Indian health care analysis using big data programming tool. Procedia Comput. Sci. 89, 521–527 (2016).

    Article 

    Google Scholar 

  • Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D. & Kang, Y.-B. Healthcare 4.0: A review of frontiers in digital health. WIREs Data Min. Knowl. Discov. 10, e1350 (2018).

    Google Scholar 

  • Gallos, P. et al. CrowdHEALTH: Big data analytics and holistic health records. Stud. Health Technol. Inform. 258, 255–256 (2019).

    Google Scholar 

  • Wang, L., Ranjan, R., Kołodziej, J., Zomaya, A. & Alem, L. Software tools and techniques for big data computing in healthcare clouds. Future Gener. Comput. Syst. 43–44, 38–39 (2015).

    Article 

    Google Scholar 

  • Kiourtis, A. et al. An autoscaling platform supporting graph data modelling big data analytics. Stud. Health Technol. Inform. 295, 376–379 (2022).

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.