November 13, 2024

Health Benefit

Healthy is Rich, Today's Best Investment

A meta-analysis identifies factors predicting the future development of freezing of gait in Parkinson’s disease

A meta-analysis identifies factors predicting the future development of freezing of gait in Parkinson’s disease
  • Giladi, N. et al. Motor blocks in Parkinson’s disease. Neurology 42, 333–339 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nutt, J. G. et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10, 734–744 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaafsma, J. D. et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 10, 391–398 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bloem, B. R., Hausdorff, J. M., Visser, J. E. & Giladi, N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19, 871–884 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Giladi, N. Medical treatment of freezing of gait. Mov. Disord. 23, S482–S488 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Okuma, Y. et al. A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease. Parkinsonism. Relat. Disord. 46, 30–35 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Cui, C. K. & Lewis, S. J. G. Future therapeutic strategies for freezing of gait in Parkinson’s Disease. Front. Hum. Neurosci. 15, 741918 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ehgoetz Martens, K. A. et al. Behavioural manifestations and associated non-motor features of freezing of gait: a narrative review and theoretical framework. Neurosci. Biobehav. Rev. 116, 350–364 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Weiss, D. et al. Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 143, 14–30 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Broeder, S. et al. Does transcranial direct current stimulation during writing alleviate upper limb freezing in people with Parkinson’s disease? A pilot study. Hum. Mov. Sci. 65, 142–153 (2019).

  • Chow, R., Tripp, B. P., Rzondzinski, D. & Almeida, Q. J. Investigating therapies for freezing of gait targeting the cognitive, limbic, and sensorimotor domains. Neurorehabil. Neural Repair 35, 290–299 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fietzek, U. M. et al. Levodopa changes the severity of freezing in Parkinson’s disease. Parkinsonism. Relat. Disord. 19, 894–896 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fonoff, E. T. et al. Spinal cord stimulation for freezing of gait: from bench to bedside. Front. Neurol. 10, 905 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gavriliuc, O. et al. Prediction of the effect of deep brain stimulation on gait freezing of Parkinson’s disease. Parkinsonism. Relat. Disord. 87, 82–86 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gilat, M. et al. A systematic review on exercise and training-based interventions for freezing of gait in Parkinson’s disease. Npj. Parkinsons. Dis. 7, 81 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • King, L. A. et al. Cognitively challenging agility boot camp program for freezing of gait in Parkinson Disease. Neurorehabil. Neural Repair 34, 417–427 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manor, B. et al. Multitarget transcranial electrical stimulation for freezing of gait: a randomized controlled trial. Mov. Disord. 36, 2693–2698 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Nonnekes, J. et al. Freezing of gait: a practical approach to management. Lancet Neurol. 14, 768–778 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Nonnekes, J., Bereau, M. & Bloem, B. R. Freezing of Gait and its Levodopa Paradox. JAMA Neurol. 77, 287–288 (2019).

  • Devos, D. et al. Methylphenidate : a treatment for Parkinson’s disease? CNS Drugs 27, 1–14 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Moreau, C. et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol. 11, 589–596 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pollak, L. et al. Low dose methylphenidate improves freezing in advanced Parkinson’s disease during off-state. J. Neural Transm. Suppl, 72, 145–148 (2007).

  • Henderson, E. J. et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 249–258 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Galna, B., Lord, S., Burn, D. J. & Rochester, L. Progression of gait dysfunction in incident Parkinson’s disease: impact of medication and phenotype. Mov. Disord. 30, 359–367 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ehgoetz Martens, K. A. et al. Predicting the onset of freezing of gait: A longitudinal study. Mov. Disord. 33, 128–135 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Xu, K. et al. Constructing prediction models for freezing of gait by nomogram and machine learning: a longitudinal study. Front. Neurol. 12, 684044 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, X. et al. Association of sleep disturbance and freezing of gait in Parkinson disease: Prevention/delay implications. J. Clin. Sleep. Med. 17, 779–789 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, S. J. et al. Baseline cognitive profile is closely associated with long-term motor prognosis in newly diagnosed ParkinsonΓàùs disease. J. Neurol. 268, 4203–4212 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhao, J. et al. Longitudinal prediction of freezing of gait in parkinson’s disease: a prospective cohort study. Front. Neurol. 12, 758580 (2021).

  • Lo, C. et al. Predicting motor, cognitive & functional impairment in Parkinson’s. Ann. Clin. Transl. Neurol. 6, 1498–1509 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, S. J. et al. White matter hyperintensities as a predictor of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 66, 105–109 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Djaldetti, R. et al. Can early dopamine transporter imaging serve as a predictor of Parkinson’s disease progression and late motor complications? J. Neurol. Sci. 390, 255–260 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim, R. et al. Presynaptic striatal dopaminergic depletion predicts the later development of freezing of gait in de novo Parkinson’s disease: an analysis of the PPMI cohort. Parkinsonism. Relat. Disord. 51, 49–54 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kim, R. et al. Apolipoprotein E4 genotype and risk of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 81, 173–178 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Dadar, M., Miyasaki, J., Duchesne, S. & Camicioli, R. White matter hyperintensities mediate the impact of amyloid b on future freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 85, 95–101 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim, R. et al. CSF amyloid42 and risk of freezing of gait in early Parkinson disease. Neurology 92, 21 (2019).

    Article 

    Google Scholar 

  • Tan, D. M. et al. Freezing of gait and activity limitations in people with Parkinson’s disease. Arch. Phys. Med Rehabil. 92, 1159–1165 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lopez, I. C., Ruiz, P. J., Del Pozo, S. V. & Bernardos, V. S. Motor complications in Parkinson’s disease: ten year follow-up study. Mov. Disord. 25, 2735–2739 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Forsaa, E. B., Larsen, J. P., Wentzel-Larsen, T. & Alves, G. A 12-year population-based study of freezing of gait in Parkinson’s disease. Parkinsonism. Relat. Disord. 21, 254–258 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, W. S., Gao, C., Tan, Y. Y. & Chen, S. D. Prevalence of freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. 268, 4138–4150 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cong, S. et al. Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta‑analysis of 129 studies. Neurosci. Biobehav. Rev. 141, 104749 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Quek, D. Y. L. et al. Validating a seated virtual reality threat paradigm for inducing anxiety and freezing of Gait in Parkinson’s Disease. J. Parkinsons. Dis. 11, 1443–1454 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gao, C., Liu, J., Tan, Y. & Chen, S. Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl. Neurodegener. 9, 12 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smulders, K. et al. Pharmacological treatment in Parkinson’s disease: effects on gait. Parkinsonism. Relat. Disord. 31, 3–13 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilat, M. et al. Freezing of gait and levodopa. Lancet Neurol. 20, 505–506 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rajput, A. H. et al. Clinical-pathological study of levodopa complications. Mov. Disord. 17, 289–296 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Koehler, P. J., Nonnekes, J. & Bloem, B. R. Freezing of gait before the introduction of levodopa. Lancet Neurol. 20, 97 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Jansen, J. A. F. et al. Exploring the levodopa-paradox of freezing of gait in dopaminergic medication-naive Parkinson’s disease populations. Npj. Parkinsons. Dis. 9, 130 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chung, S. J. et al. Heterogeneous patterns of striatal dopamine loss in patients with young- versus old-onset parkinson’s disease: impact on clinical features. J. Mov. Disord. 12, 113–119 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bharti, K. et al. Neuroimaging advances in Parkinson’s disease with freezing of gait: a systematic review. Neuroimage. Clin. 24, 102059 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giladi, N. & Hausdorff, J. M. The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. J. Neurol. Sci. 248, 173–176 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Yang, N. et al. Impact of GBA variants on longitudinal freezing of gait progression in early Parkinson’s disease. J. Neurol. 270, 2756–2764 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, K. et al. Development and validation of a nomogram for freezing of gait in patients with Parkinson’s Disease. Acta Neurol. Scand. 145, 658–668 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Nonnekes, J. & Nieuwboer, A. Towards personalized rehabilitation for gait impairments in Parkinson’s Disease. J. Parkinsons. Dis. 8, S101–S106 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Payami, H. The emerging science of precision medicine and pharmacogenomics for Parkinson’s disease. Mov. Disord. 32, 1139–1146 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riggare, S. & Hagglund, M. Precision medicine in Parkinson’s Disease – exploring patient-initiated self-tracking. J. Parkinsons. Dis. 8, 441–446 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Straccia, G., Colucci, F., Eleopra, R. & Cilia, R. Precision medicine in Parkinson’s Disease: from genetic risk signals to personalized therapy. Brain Sci. 12, 1308 (2022).

  • Bode, M. et al. Multidomain cognitive training increases physical activity in people with Parkinson’s disease with mild cognitive impairment. Parkinsonism. Relat. Disord. 113, 105330 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Geerlings, A. D. et al. Case management interventions in chronic disease reduce anxiety and depressive symptoms: a systematic review and meta-analysis. PLoS. One 18, e0282590 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rezazadeh Yazd, S. A. et al. Reducing depression and anxiety symptoms in patients with Parkinson’s disease: the effectiveness of group cognitive behavioral therapy. Parkinsonism. Relat. Disord. 112, 105456 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Wong, P. L., Cheng, S. J., Yang, Y. R. & Wang, R. Y. Effects of dual task training on dual task gait performance and cognitive function in individuals with Parkinson Disease: a meta-analysis and meta-regression. Arch. Phys. Med. Rehabil. 104, 950–964 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Allen, N. E. et al. Interventions for preventing falls in Parkinson’s disease. Cochrane Database Syst. Rev. 6, CD011574 (2022).

    PubMed 

    Google Scholar 

  • Ernst, M. et al. Physical exercise for people with Parkinson’s disease: a systematic review and network meta-analysis. Cochrane Database Syst. Rev. 1, CD013856 (2023).

    PubMed 

    Google Scholar 

  • Goh, L. et al. The effect of rehabilitation interventions on freezing of gait in people with Parkinson’s disease is unclear: a systematic review and meta-analyses. Disabil. Rehabil. 45, 3199–3218 (2023).

  • Ferrusola-Pastrana, A., Davison, G. & Meadows, S. N. The therapeutic effects of multimodal exercise for people with Parkinson’s: a longitudinal community-based study. Parkinsonism. Relat. Disord. 110, 105366 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Johansson, M. E. et al. Aerobic exercise alters brain function and structure in Parkinson’s Disease: a randomized controlled trial. Ann. Neurol. 91, 203–216 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhen, K. et al. A systematic review and meta-analysis on effects of aerobic exercise in people with Parkinson’s disease. Npj. Parkinsons. Dis. 8, 146 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Pablo-Fernandez, E., Lees, A. J., Holton, J. L. & Warner, T. T. Prognosis and neuropathologic correlation of clinical subtypes of Parkinson Disease. JAMA Neurol. 76, 470–479 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wells, G. A. et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. (2014).

  • Andrade, C. Mean difference, Standardized Mean Difference (SMD), and their use in meta-analysis: as simple as it gets. J. Clin. Psychiatry 81, 20f13681 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Higgins J. P. T. et al. (eds). Cochrane Handbook for Systematic Reviews of Interventions. Chichester (UK): John Wiley & Sons, version 6.3. (2022).

  • Banks, S. J. et al. Non-motor predictors of freezing of gait in Parkinson’s disease. Gait. Posture 68, 311–316 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Chong, R. K., Lee, K. H., Morgan, J. & Wakade, C. Duration of step initiation predicts freezing in Parkinson’s disease. Acta Neurol. Scand. 132, 105–110 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • D’Cruz, N. et al. Repetitive motor control deficits most consistent predictors of conversion to freezing of gait in Parkinson’s Disease: a prospective cohort study. J. Parkinsons. Dis. 10, 559–571 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gallea, C. et al. Antisaccade, a predictive marker for freezing of gait in Parkinson’s disease and gait/gaze network connectivity. Brain 144, 504–514 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Garcia-Ruiz, P. J. et al. What factors influence motor complications in parkinson disease? A 10-year prospective study. Clin. Neuropharmacol. 35, 1–5 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Giladi, N. et al. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56, 1712–1721 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Herman, T. et al. Depressive symptoms may increase the risk of the future development of freezing of gait in patients with Parkinson’s disease: Findings from a 5-year prospective study. Parkinsonism. Relat. Disord. 60, 98–104 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Jeong, S. H. et al. Neuropsychiatric burden is a predictor of early freezing and motor progression in drug-naive Parkinson’s Disease. J. Parkinsons. Dis. 11, 1947–1956 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jeong, S. H. et al. Does dopamine deficiency affect sex-dependent prognosis in Parkinson’s disease? Parkinsonism. Relat. Disord. 102, 57–63 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kelly, V. E. et al. Association of cognitive domains with postural instability/gait disturbance in Parkinson’s disease. Parkinsonism. Relat. Disord. 21, 692–697 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kim, Y. E. et al. Chronological view of peak and diphasic dyskinesia, wearing off and freezing of gait in Parkinson’s Disease. J. Parkinson’s Dis. 9, 741–747 (2019).

    Article 

    Google Scholar 

  • Lee, J. J., Hong, J. Y. & Baik, J. S. Hyposmia may predict development of freezing of gait in Parkinson’s disease. J. Neural Transm. 128, 763–770 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ou, R. et al. Predictors of freezing of gait in Chinese patients with Parkinson’s disease. Brain Behav. 8, e00931 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prange, S. P. et al. Age and time course of long-term motor and nonmotor complications in Parkinson disease. Neurology 92, 73 (2019).

    Article 

    Google Scholar 

  • Wang, F., Pan, Y., Zhang, M. & Hu, K. Predicting the onset of freezing of gait in Parkinson’s disease. Bmc. Neurol. 22, 213 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, H. et al. A prospective study of freezing of gait with early Parkinson disease in Chinese patients. Medicine 95, e4056 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, S. J. et al. Initial motor reserve and long-term prognosis in Parkinson’s disease. Neurobiol. Aging 92, 1–6 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Seok Jong, C. et al. Perivascular spaces in the basal ganglia and long-term motor prognosis in newly diagnosed Parkinson Disease. Neurology 96, e2121–e2131 (2021).

    Article 

    Google Scholar 

  • D’Cruz, N. et al. Thalamic morphology predicts the onset of freezing of gait in Parkinson’s disease. Npj. Parkinsons. Dis. 7, 20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, R. & Jeon, B. Serum neurofilament light chain predicts future freezing of gait in Parkinson’s disease. Parkinsonism. Relat. Disord. 91, 102–104 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Li, N. et al. Brain network topology and future development of freezing of gait in Parkinson’s disease: a longitudinal study. J. Neurol. 269, 2503–2512 (2022).

  • Li, Y. et al. Baseline cerebral structural morphology predict freezing of gait in early drug-naive Parkinson’s disease. Npj. Parkinsons. Dis. 8, 176 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarasso, E. et al. MRI biomarkers of freezing of gait development in Parkinson’s disease. Npj. Parkinsons. Dis. 8, 158 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wieler, M., Gee, M., Camicioli, R. & Martin, W. R. W. Freezing of gait in early Parkinson’s disease: Nigral iron content estimated from magnetic resonance imaging. J. Neurol. Sci. 361, 87–91 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.